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Geometric fitting algorithms

Suppose we have a set of 3D points denoted as:

{xi}mi=1 = {x0,x1, . . . ,xm}, where xi ∈ R3. (1)

We can approach the problem of fitting geometric entities in two ways:

1. Through definition. One approach is to solve a (typically) overdetermined
linear system derived from the equations of the geometric entities themselves
and stacking as many data points as we have.

2. Another approach is to make the equations of these entities contingent on
the observed data, minimizing the error between the observed points and
the theoretical points defined by each parameter of the entity within the
parameter space where the optimization is performed. With this, we will find
the parameters of the entity that best fit under the defined error criterion.

3D Circle fitting

In a Cartesian coordinate system in three-dimensional Euclidean space, the equation
of a sphere with radius r and center O(a, b, c) is given by:

(x− a)2 + (y − b)2 + (z − c)2 − r2 = 0. (2)

Our main objective is to rearrange this equation to separate the independent
variables/unknowns from the coefficient/data terms. Expanding the equation of
the sphere:

x2 + a2 − 2xa+ y2 + b2 − 2yb+ z2 + c2 − 2zc = r2. (3)
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Reorganizing terms, we get:

(x2 + y2 + z2) + (2x · a+ 2y · b+ 2z · c) + (a2 + b2 + c2 − r2) = 0. (4)

Let α = a2 + b2 + c2 − r2. The equation becomes:

(2x · a+ 2y · b+ 2z · c) + α = (x2 + y2 + z2). (5)

In matrix form, this can be expressed as:

[
2x 2y 2z 1

]
1×4

·


a
b
c
α


4×1

=
[
x2 + y2 + z2

]
1×1

, (6)

which is highly recognizable as a system of the form Ax = b (our best friend).
It is very convenient that we can express a geometric entity in a system of linear

equations in closed form. This system can be solved for our data using methods
such as Gaussian elimination, matrix decomposition (e.g., LU, QR, SVD or Moore-
Penrose pseudoinverse A+).

Nevertheless, we can derive a solution from another perspective.
Let us have a point cloud P , defined as:

P = {(xi, yi, zi)}mi=1, m > 4. (7)

Using a least-squares approach, we can define the loss function E(·), which
measures the accumulated squared error between the distances of the points to the
center and an ideal distance r:

E(a, b, c, r) =
1

2

m∑
i=1

(√
(xi − a)2 + (yi − b)2 + (zi − c)2 − r

)2
=

1

2

m∑
i=1

(Li − r)2 .

(8)

We see that the points of P are our data, and the variables a, b, c, r are our
unknowns. We aim to find the sphere that best fits the data in a least-squares
sense (hence the squared difference in the expression we defined for E(·)), where
this function reaches a minimum. Since E(·) is a convex quadratic function, its
minimum is determined by the optimality condition. To find this minimum, we
calculate the derivatives of E(a, b, c, r) with respect to its variables and set them to
zero.

For the variable r:

∂E

∂r
= −�2

1

�2

m∑
i=1

(Li − r) = −
m∑
i=1

(Li − r) = r
m∑
i=1

1−
m∑
i=1

Li = r ·m−
m∑
i=1

Li. (9)

∂E

∂r
= 0 =⇒ r =

1

m

m∑
i=1

Li . (10)
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For the variable a:
∂E

∂a
=

m∑
i=1

(Li − r)
∂Li

∂a
. (11)

Knowing that
∂Li

∂a
= −xi − a

Li

, (12)

we have:
∂E

∂a
=

m∑
i=1

(Li − r)

(
−xi − a

Li

)
=

m∑
i=1

(
(xi − a)− r

xi − a

Li

)
=

m∑
i=1

(xi − a)−
m∑
i=1

r
xi − a

Li

= (m−
m∑
i=1

r

Li

)(xi − a).

(13)

∂E

∂a
= 0 =⇒

m∑
i=1

(xi − a) =
m∑
i=1

(
r
xi − a

Li

)
. (14)

m∑
i=1

xi −
m∑
i=1

a =
m∑
i=1

r(xi − a)

Li

. (15)

m∑
i=1

xi − a
m∑
i=1

1 = r
m∑
i=1

xi

Li

− r
m∑
i=1

a

Li

. (16)

m∑
i=1

xi − r
m∑
i=1

xi

Li

= a

(
m+ r

m∑
i=1

1

Li

)
. (17)

a =

∑m
i=1 xi − r

∑m
i=1

xi

Li

m+ r
∑m

i=1
1
Li

. (18)

Analogously, for the variables b and c, we have:

b =

∑m
i=1 yi − r

∑m
i=1

yi
Li

m+ r
∑m

i=1
1
Li

. (19)

c =

∑m
i=1 zi − r

∑m
i=1

zi
Li

m+ r
∑m

i=1
1
Li

. (20)

These are the parameters of the sphere that best fit our data in the least-squares
sense.
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Figure 1: A centered torus with radii specified by c and a.

Centered torus

In a Cartesian coordinate system in three-dimensional Euclidean space, the equation
of a symmetric torus azimuthally on the z -axis, with radius c from the center of
the hole to the center of the torus tube, and radius of the tube a, is given by:(

c−
√

x2 + y2
)2

+ z2 − a2 = 0. (21)

Expanding and rearranging the terms:

c2 +
(
x2 + y2

)
− 2c

√
x2 + y2 + z2 − a2 = 0. (22)

Simplifying further:

c2 − 2c
√

x2 + y2 − a2 = −
(
x2 + y2 + z2

)
. (23)

Let α = c2 − a2. Substituting α into the equation:

α− 2c
√

x2 + y2 = −
(
x2 + y2 + z2

)
. (24)

Finally, this can be rewritten in matrix form, which can be efficiently solved:

[
1 −2

√
x2 + y2

]
·
[
α
c

]
=
[
− (x2 + y2 + z2)

]
. (25)

In the end, we typically end up with an overdetermined system that needs to be
solved from the data points P = {(xi, yi, zi)}mi=1 with which we have at our disposal.
Let ri =

√
x2
i + y2i and di = x2

i + y2i + z2i , we end with:

...
...

1 −2r1
1 −2r2
1 −2r3
1 −2r4
...

...


·
[
α
c

]
=



...
−d1
−d2
−d3
−d4
...


, (26)

and it is suitable to be solved by any of the methods mentioned for systems of
the type Ax = b
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