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Least-squares

Least squares is one of our most reliable methods for geometric fitting; not only is it
practical (explicit), but it is also mathematically elegant (convex, in mathematical
terms).

The classic process of fitting a line y = max + b to data points, which are not
guaranteed to fit perfectly, involves minimizing the following least-squares error
function:
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where f(z) = max + b. ThlS expression measures vertical distances, i.e., devia-
tions in the direction of the y-axis, in a 2D axis representation.
Alternative approaches to least squares involve using norms other than L, for
example, the L; norm:
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Or the perpendicular distance:
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It is worth mentioning that minimizing distances orthogonal to the line (total

least squares), instead of the vertical ones, is often more robust to outliers.
The extremality condition for the scalar function D (refer to Equation (|1f)) is:
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For example, if n = 2 (to satisfy algebraically the necessary condition for a
complete system with 2 unknowns), we obtain:

xo(mzo +b—1yo) + x1(may +b—1y1)
(mxo+b—yo) + (mxy +b—1y1)

=0,
=0.

In matrix form, the above system can be written as:

1 1 ‘ b+mxy—1yo| |0
To T4 b+mxy —y| |0]°
Expanding further:

L 1| (|1 x| |b] |vl|) _|0
To X1 1 = m Y1 0|
This can also be expressed compactly as:

AT Az — AT .y =0.

Here, A is the design matrix, x = [b] ,and y = {yo] )
m Y1

We can now solve the system using Singular Value Decomposition (SVD) or the
Moore-Penrose pseudoinverse. Using the pseudoinverse, the solution is given by:

x = (ATA) ATy,

with the condition that AT A is invertible (which requires that the points are
distinct).

Fitting polynomials

Generalizing the line equation (i.e. the first-degree polynomial) to a k-order poly-
nomial:

y=ao+ar+ -+ apr" (2)
The remainder of the optimization problem is given by:
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The partial derivatives set to zero, necessary to satisfy the optimality condition
for finding the unknowns that minimize the residual, are:
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This leads to a system of nonlinear equations (if £ > 1):

a0n+alzxi+~~~+akzxf22yi
aOin+a12x?+~~+akafH :inyi
aOfo—l—alef“—i—~'-+akZ$?k :foyi

Rewritten in matrix form:

n Sap . Yok ao >y
Ya Yyl Y |a >y

Sk ettt o Ya¥ | | >ty
G-a=b.

The first matrix, G, is the Gram matrix. These are denoted the “normal equa-
tions”. It is straightforward to demonstrate that we can write the normal equations
using the Vandermonde matrix, V:
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l.e.:

11 1] (101 ... 1]
1z 22 ... 2| [ao Y1
1T Lo ... XTp 1 =z IZ Ik a 1 Lo ... Tp y
2 .2 2 2 Ty ... 2 1 2 2 2 2

x{ x3 ... ' _ — |zy x5 ... x
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Thus, given n tuples (z;,y;), and fitting a polynomial of degree k with coefficients
ag, - - - , @, we have:

2 k

1z xf ... a3 ag U1
2 k

1 @z 25 ... x5 ai Yo
2 k

1 =z, =z Ty | |0k Yn

Let X =V s0o X -a=y.



By premultiplying by X7, the problem can be solved numerically, or by directly
inverting (if the problem is well-posed / the matrix is well-formed):

a=(X"X)"'X"y,

which is the least-squares solution for the Vandermonde polynomial.
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