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Least-squares

Least squares is one of our most reliable methods for geometric fitting; not only is it
practical (explicit), but it is also mathematically elegant (convex, in mathematical
terms).

The classic process of fitting a line y = mx + b to data points, which are not
guaranteed to fit perfectly, involves minimizing the following least-squares error
function:

D =
n∑

i=1

(f(xi)− yi)
2 =

n∑
i=1

(mxi + b− yi)
2 , (1)

where f(x) = mx + b. This expression measures vertical distances, i.e., devia-
tions in the direction of the y-axis, in a 2D axis representation.

Alternative approaches to least squares involve using norms other than L2, for
example, the L1 norm:

D′ =
n∑

i=1

|f(xi)− yi| ,

Or the perpendicular distance:

D′′ =
|Axi +Byi + C|√

A2 +B2
.

It is worth mentioning that minimizing distances orthogonal to the line (total
least squares), instead of the vertical ones, is often more robust to outliers.

The extremality condition for the scalar function D (refer to Equation (1)) is:

∂D

∂b
=

n∑
i=1

2 · (mxi + b− yi) = 0,
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∂D

∂m
=

n∑
i=1

2xi · (mxi + b− yi) = 0.

For example, if n = 2 (to satisfy algebraically the necessary condition for a
complete system with 2 unknowns), we obtain:

x0(mx0 + b− y0) + x1(mx1 + b− y1) = 0,

(mx0 + b− y0) + (mx1 + b− y1) = 0.

In matrix form, the above system can be written as:[
1 1
x0 x1

]
·
[
b+mx0 − y0
b+mx1 − y1

]
=

[
0
0

]
.

Expanding further:[
1 1
x0 x1

]
·
([

1 x0

1 x1

]
·
[
b
m

]
−
[
y0
y1

])
=

[
0
0

]
.

This can also be expressed compactly as:

AT · A · x− AT · y = 0.

Here, A is the design matrix, x =

[
b
m

]
, and y =

[
y0
y1

]
.

We can now solve the system using Singular Value Decomposition (SVD) or the
Moore-Penrose pseudoinverse. Using the pseudoinverse, the solution is given by:

x = (ATA)−1ATy,

with the condition that ATA is invertible (which requires that the points are
distinct).

Fitting polynomials

Generalizing the line equation (i.e. the first-degree polynomial) to a k-order poly-
nomial:

y = a0 + a1x+ · · ·+ akx
k (2)

The remainder of the optimization problem is given by:

R2 =
n∑

i=1

(
yi −

(
a0 + a1xi + · · ·+ akx

k
i

))2
(3)

The partial derivatives set to zero, necessary to satisfy the optimality condition
for finding the unknowns that minimize the residual, are:

∂R2

∂a0
= −2

n∑
i=1

(
yi −

(
a0 + a1xi + · · ·+ akx

k
i

))
= 0
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∂R2

∂a1
= −2

n∑
i=1

(
yi −

(
a0 + a1xi + · · ·+ akx

k
i

))
xi = 0

∂R2

∂ak
= −2

n∑
i=1

(
yi −

(
a0 + a1xi + · · ·+ akx

k
i

))
xk
i = 0

This leads to a system of nonlinear equations (if k > 1):

a0n+ a1
∑
i

xi + · · ·+ ak
∑
i

xk
i =

∑
i

yi

a0
∑
i

xi + a1
∑
i

x2
i + · · ·+ ak

∑
i

xk+1
i =

∑
i

xiyi

a0
∑
i

xk
i + a1

∑
i

xk+1
i + · · ·+ ak

∑
i

x2k
i =

∑
i

xk
i yi

Rewritten in matrix form:
n

∑
xi . . .

∑
xk
i∑

xi

∑
x2
i . . .

∑
xk+1
i

...
...

. . .
...∑

xk
i

∑
xk+1
i . . .

∑
x2k
i



a0
a1
...
ak

 =


∑

yi∑
xiyi
...∑
xk
i yi


G · a = b.

The first matrix, G, is the Gram matrix. These are denoted the “normal equa-
tions”. It is straightforward to demonstrate that we can write the normal equations
using the Vandermonde matrix, V :

G · a = b ⇐⇒ V TV a = V Ty,

i.e.:


1 1 . . . 1
x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

...
...

. . .
...

xk
1 xk

2 . . . xk
n



1 x1 x2

1 . . . xk
1

1 x2 x2
2 . . . xk

2
...

...
...

. . .
...

1 xn x2
n . . . xk

n



a0
a1
...
ak

 =


1 1 . . . 1
x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

...
...

. . .
...

xk
1 xk

2 . . . xk
n



y1
y2
...
yn

 .

Thus, given n tuples (xi, yi), and fitting a polynomial of degree k with coefficients
a0, . . . , ak, we have: 

1 x1 x2
1 . . . xk

1

1 x2 x2
2 . . . xk

2
...

...
...

. . .
...

1 xn x2
n . . . xk

n



a0
a1
...
ak

 =


y1
y2
...
yn

 .

Let X ≡ V , so X · a = y.
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By premultiplying by XT , the problem can be solved numerically, or by directly
inverting (if the problem is well-posed / the matrix is well-formed):

a = (XTX)−1XTy,

which is the least-squares solution for the Vandermonde polynomial.
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